
Einstieg: Bewegungen mithilfe von Energieumwandlungen beschreiben.

Das Programm energy-skate-park-basics_de ermöglicht einen guten Zugang.

Bewegungen lassen sich recht einfach auf der Grundlage von Energieumwandlungen beschreiben.

Ohne Reibung: Zunächst starten wir mit potenzieller Energie (Höhenenergie) und kinetischer Energie (Bewegungsenergie)

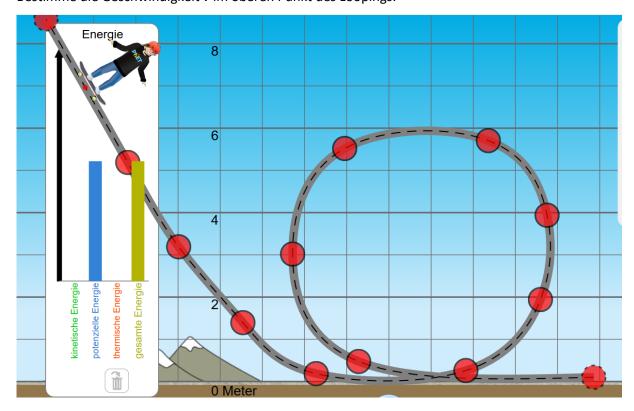
Mit Reibung: Dabei wird ein Teil der Energie, die einem System am Anfang zugeführt worden ist, in innere Energie (thermische Energie) der Umgebung umgewandelt, deren Temperatur dabei minimal steigt.

Mit den Menüpunkten **Einstieg, Reibung** und **Bahnen erstellen** kannst du dich gut selbstständig in die energetische Beschreibung von Bewegungen einarbeiten.

Energieerhaltungssatz: In einem abgeschlossenen System ist die Gesamtenergie immer konstant. Ohne Reibung gilt für jeden Zeitpunkt der Bewegung: $E_{gesamt} = E_{pot} + E_{kin}$.

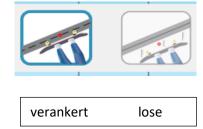
Nun reichen in der Physik Beschreibungen nicht aus. Für die einzelnen Energieformen kennt man Gleichungen.

Potenzielle Energie: $E_{pot} = m \cdot g \cdot \Delta h$, m: Masse eines Körpers, g: Fallbeschleunigung Δh : Höhenunterschied.


Im oberen Bild wäre demnach $E_{pot}=60~{\rm kg}\cdot 10^{\frac{\rm m}{\rm s^2}}\cdot 6~{\rm m}=3600~{\rm J(oule)}$, wenn der Skater eine Masse von 60 kg besitzt.

Kinetische Energie: $E_{kin} = \frac{1}{2} \cdot m \cdot v^2$, v: Geschwindigkeit eines Körpers.

Aufgabe 1: Beschreibe die Bewegung im oberen Bild mithilfe von Energieumwandlungen. Bestimme die Geschwindigkeit \mathbf{v} im tiefsten Punkt der Bahn des Skaters im tiefsten Punkt der Bahn und auf halber Höhe (ohne Reibung, m = 60 kg)? Welche Skalierung besitzt demnach der abgebildete Tacho?


Aufgabe 2: Unten siehst du einen Looping (ohne Reibung, m = 60 kg). Beschreibe die Bewegung mit Energieumwandlungen.

Bestimme die Geschwindigkeit v im oberen Punkt des Loopings.

Aufgabe 3: Mit dem Ergebnis von Aufgabe 2 kannst du ausrechnen, wie groß die Zentripetalkraft F_2 im oberen Punkt des Loopings sein muss. Vergleiche den Wert mit der Gewichtskraft F_G des Skaters und überprüfe, ob der Skater auf der Bahn bleibt, wenn er nicht an der Fahrbahn verankert ist.

Probiere es aus!

Aufgabe 4: Erstelle nun eigene Bahnen und bestätige daran den Energieerhaltungssatz der Mechanik. Der Tacho ist dabei hilfreich.